Exponential convergence of the deep neural network approximation for analytic functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of analytic functions : a method of enhanced convergence

We present a method of enhanced convergence for the approximation of analytic functions. This method introduces conformal transformations in the approximation problems in order to help extract the values of a given analytic function from its Taylor expansion. We show that conformal transformations can extend the radius of convergence of a power series far into infinity, enhance substantially it...

متن کامل

Neural Networks for Optimal Approximation of Smooth and Analytic Functions

We prove that neural networks with a single hidden layer are capable of providing an optimal order of approximation for functions assumed to possess a given number of derivatives, if the activation function evaluated by each principal element satisfies certain technical conditions. Under these conditions, it is also possible to construct networks that provide a geometric order of approximation ...

متن کامل

The Fractional Differential Polynomial Neural Network for Approximation of Functions

In this work, we introduce a generalization of the differential polynomial neural network utilizing fractional calculus. Fractional calculus is taken in the sense of the Caputo differential operator. It approximates a multi-parametric function with particular polynomials characterizing its functional output as a generalization of input patterns. This method can be employed on data to describe m...

متن کامل

Deep Neural Network Approximation using Tensor Sketching

Deep neural networks are powerful learning models that achieve state-of-the-art performance on many computer vision, speech, and language processing tasks. In this paper, we study a fundamental question that arises when designing deep network architectures: Given a target network architecture can we design a “smaller” network architecture that “approximates” the operation of the target network?...

متن کامل

Approximation of Analytic Functions by Chebyshev Functions

and Applied Analysis 3 where we refer to 1.4 for the am’s and we follow the convention ∏m−1 j m · · · 1. We can easily check that cm’s satisfy the following relation: m 2 m 1 cm 2 − ( m2 − n2 ) cm am 2.2 for any m ∈ {0, 1, 2, . . .}. Theorem 2.1. Assume that n is a positive integer and the radius of convergence of the power series ∑∞ m 0 amx m is ρ > 0. Let ρ0 min{1, ρ}. Then, every solution y ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Mathematics

سال: 2018

ISSN: 1674-7283,1869-1862

DOI: 10.1007/s11425-018-9387-x